Search results

Search for "indirect electrolysis" in Full Text gives 10 result(s) in Beilstein Journal of Organic Chemistry.

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • multigram-scale syntheses [86]. The selective allylic [86] and benzylic [80] CH-oxidation to the corresponding carbonyl compounds was achieved. Compared to the direct anodic oxidation of organic substrates, the N-oxyl-mediated indirect electrolysis proceeds at lower potentials, demonstrates wider
PDF
Album
Perspective
Published 09 Dec 2022

A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH4I

  • Shang-Feng Yang,
  • Pei Li,
  • Zi-Lin Fang,
  • Sen Liang,
  • Hong-Yu Tian,
  • Bao-Guo Sun,
  • Kun Xu and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2022, 18, 1249–1255, doi:10.3762/bjoc.18.130

Graphical Abstract
  • , the in situ generated α-iodoketone was proposed to be the key active species. Keywords: 2-aminothiazoles; electrosynthesis; indirect electrolysis; halide ion; Introduction Thiazoles are prevalent structural motifs in a wide range of natural products [1] and synthetic molecules possessing various
  • . Organic electrosynthesis has been recognized as a green, modern, and safe technique, since electrons can be used as an alternative for oxidants or reductants [30][31][32][33][34][35][36][37][38]. During our continuous interests in halide-mediated indirect electrolysis [39][40][41][42], we have achieved
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2022

Cathodic generation of reactive (phenylthio)difluoromethyl species and its reactions: mechanistic aspects and synthetic applications

  • Sadanobu Iwase,
  • Shinsuke Inagi and
  • Toshio Fuchigami

Beilstein J. Org. Chem. 2022, 18, 872–880, doi:10.3762/bjoc.18.88

Graphical Abstract
  • -methylstyrene consumed less than 2 F/mol of electricity to provide protonated and deuterated adducts 4/4D in almost same yields. Similar indirect electrolysis of compound 1 in iPrOH/MeCN in the presence of 1,1-diphenylethylene consumed much more than 2 F/mol of electricity to afford adduct 6 in high yield
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2022

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • be considered indirect electrolysis as the mediator takes an electron from the solid electrode and performs the organic transformation. This strategy has been shown to be suitable for inducing chirality, particularly in electro-oxidation reactions. Many chiral TEMPO-derived compounds have been
PDF
Album
Review
Published 13 Nov 2019

Functionalization of N-arylglycine esters: electrocatalytic access to C–C bonds mediated by n-Bu4NI

  • Mi-Hai Luo,
  • Yang-Ye Jiang,
  • Kun Xu,
  • Yong-Guo Liu,
  • Bao-Guo Sun and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2018, 14, 499–505, doi:10.3762/bjoc.14.35

Graphical Abstract
  • mediator. Cross dehydrogenative coupling of N-arylglycine esters with C–H nucleophiles. Electrochemical CDC reaction of 2a and various N-arylglycine esters. Reaction conditions for the indirect electrolysis: 1 (0.5 mmol), 2a (0.6 mmol), n-Bu4NI (30 mol %), 0.1 M LiClO4/CH3CN (5 mL) and CH2Cl2 (10 mL), AcOH
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2018

The selective electrochemical fluorination of S-alkyl benzothioate and its derivatives

  • Shunsuke Kuribayashi,
  • Tomoyuki Kurioka,
  • Shinsuke Inagi,
  • Ho-Jung Lu,
  • Biing-Jiun Uang and
  • Toshio Fuchigami

Beilstein J. Org. Chem. 2018, 14, 389–396, doi:10.3762/bjoc.14.27

Graphical Abstract
  • -fluorination. Based on these findings, we anticipated that the α-cationic intermediate could also be generated anodically from S-alkyl benzothioates. Moreover, we previously successfully carried out an anodic fluorodesulfurization of S-aryl thiobenzoates, and found that the indirect electrolysis using a
PDF
Album
Supp Info
Letter
Published 12 Feb 2018

Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

  • Bichlien H. Nguyen,
  • Robert J. Perkins,
  • Jake A. Smith and
  • Kevin D. Moeller

Beilstein J. Org. Chem. 2015, 11, 280–287, doi:10.3762/bjoc.11.32

Graphical Abstract
  • electrochemical setup. The same electrochemical solar cell developed for the direct oxidation experiments could be utilized to conduct indirect electrolysis. In the second oxidation illustrated, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) was recycled at the anode [20]. The bulky oxidant was used to selectively
PDF
Album
Commentary
Published 23 Feb 2015

Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

  • Philipp Röse,
  • Steffen Emge,
  • Jun-ichi Yoshida and
  • Gerhard Hilt

Beilstein J. Org. Chem. 2015, 11, 174–183, doi:10.3762/bjoc.11.18

Graphical Abstract
  • -dienols were transformed into cyclic phenylselenoethers by intramolecular cyclisation using selenium cations generated by indirect electrolysis. The reaction was carried out by electrolysing a mixture of the 1,4-dienol, diphenyl diselenide and tetraethylammonium bromide in CH3CN at room temperature in an
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2015

The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions

  • Alan M. Jones and
  • Craig E. Banks

Beilstein J. Org. Chem. 2014, 10, 3056–3072, doi:10.3762/bjoc.10.323

Graphical Abstract
  • to the C–H activation of low reactivity intermediates. In this article, containing over 100 references, we highlight the development of the Shono-type oxidations from the original direct electrolysis methods, to the use of electroauxiliaries before arriving at indirect electrolysis methodologies. We
  • radicals from the cation pool method [24][25]. Indirect electrolysis methods The only indirect anodic oxidation method to perform the Shono-oxidation with a thiophenyl electroauxiliary has been reported by Fuchigami and co-workers [36]. Using a catalytic triarylamine redox mediator, anodic
PDF
Album
Review
Published 18 Dec 2014

Recent advances in the electrochemical construction of heterocycles

  • Robert Francke

Beilstein J. Org. Chem. 2014, 10, 2858–2873, doi:10.3762/bjoc.10.303

Graphical Abstract
  • interesting and practical alternative to conventional methods for heterocycle synthesis [19][20]. Since toxic and hazardous redox reagents are either replaced by electric current (direct electrolysis) or generated in situ from stable and non-hazardous precursors (indirect electrolysis), electrosynthesis is
  • categories are discussed in sections 1.4 and 2.4. A further important aspect is the type of electron transfer involved in the reaction. With regard to heterocycle synthesis, both direct electrolysis involving heterogeneous electron transfer between electrode and substrate as well as indirect electrolysis
  • . Principle of indirect electrolysis. Anodic intramolecular cyclization of olefines in methanol. Anodic cyclization of olefines in CH2Cl2/DMSO. Intramolecular coupling of 1,6-dienes in CH2Cl2/DMSO. Cyclization of bromopropargyloxy ester 12. Proposed mechanism for the radical cyclization of bromopropargyloxy
PDF
Album
Review
Published 03 Dec 2014
Other Beilstein-Institut Open Science Activities